
International Journal of Higher Education and Research (www.ijher.com)          32 (www.ijher.com) 

INTERNATIONAL JOURNAL OF HIGHER 
EDUCATION AND RESEARCH 

IJHER, Vol., 6(1), 2016, 32-45. 

www.ijher.com 

IJHER 

(ISSN 2277 260X) 

CODEN: IJHER                                                      ORIGINAL ARTICLE 
 

Threats to Android Security through Vendor Customization 
 

A.J.Singh
1
, Akshay Bhardwaj

2
 

Professor, Computer Science, HP University, Shimla, India
 1

 

Student, Computer Science, HP University, Shimla, India
 2

 

 

 

ABSTRACT 
Android’s popularity is due in part to it being an open platform. Google produces a baseline version of Android, 

and then makes it freely available in the form of the Android Open Source Project (AOSP). Manufacturers and 

carriers are free to build upon this baseline, adding custom features in a bid to differentiate their products from 
their competitors. These customizations have grown increasingly sophisticated over time, as the hardware has 

grown more capable and the vendors more adept at working with the Android framework. Flagship devices 

today often offer a substantially different look and feel, along with a plethora of pre-loaded third-party apps. 

From another perspective, vendor customizations will inherently impact overall Android security. Past works 
have shown that Android devices had security flaws shipped in their preloaded apps. Note that stock images 

include code from potentially many sources: the AOSP itself, the vendor, and any third-party apps that are 

bundled by the vendor or carrier. It is therefore important to attribute each particular security issue back to its 
source for possible bug-fixes or improvements. We aim to study vendor customizations on stock Android devices 

and assess the impact on overall Android security. 
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INTRODUCTION 
 Android is an open-source Operating System created for mobile phones and other devices led by 

Google. In 2003, Andy Rubin and his team invented Android [1]. Later in 2005, Google acquired the 

Android operating system. Android is a software environment built for mobile devices. It is not a 

hardware platform. Android includes a Linux kernel-based OS, a rich UI, end-user applications, code 

libraries, application frameworks, multimedia support, and much more [1]. On the 5th of November in 

2007, distribution of Google‟s version was announced with the founding of the Open Handset Alliance. 

Open Handset Alliance is a group of device manufactures, Chipset Manufacturers and Mobile Carriers. 

Device Manufacturers include companies like HTC, LG, Samsung, Motorola and Sony. Chipset makers 

are Qualcomm, Texas Instrumental and Intel. Mobile Carrier companies are represented by companies 

like Verizon, Sprint, AT&T, T- Mobile, MetroPCS and lots of other companies all over the world [2]. 

Most of the Android platform is released under Apache 2.0 license. Google Android released the entire 

source code under an Apache license [1]. With Apache license, a user can freely download and use 

Android for personal and commercial purposes. It allows user to make changes to original software 

without having to contribute to the open source community. 
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The Linux-based open source Android platform has grown into the mainstay of mobile computing, 

attracting most phone manufacturers, carriers as well as millions of developers to build their services 

and applications (app for short) upon it. Up to March 2014, Android has dominated global smartphone 

shipments with nearly 80% market share. Such success, however, does not come without any cost. The 

openness of the system allows the manufacturers and carriers to alter it at will, making arbitrary 

customizations to fit the OS to their hardware and distinguish their services from what their 

competitors offer. Further complicating this situation is the fast pace with which the Android Open 

Source Project (AOSP) upgrades its OS versions. Since 2009, 19 official Android versions have been 

released. Most of them have been heavily customized, which results in tens of thousands of customized 

Android branches coexisting on billions of mobile phones around the world. This fragmented 

ecosystem not only makes development and testing of new apps across different phones a challenge, 

but it also brings in a plethora of security risks when vendors and carriers enrich the system‟s 

functionalities without fully understanding the security implications of the changes they make. 

 

Security risks in customizations: For each new Android version, Google first releases it to mobile 

phone vendors, allowing them to add their apps, device drivers and other new features to their 

corresponding Android branches. Such customizations, if not carefully done, could bring in 

implementation errors, including those with serious security consequences. Indeed, recent studies show 

that many pre-loaded apps on those images are vulnerable, leaking system capabilities or sensitive user 

information to unauthorized parties. The security risks here, however, go much deeper than those on 

the app layer, as what have been customized by vendors are way beyond apps. Particularly, they almost 

always need to modify a few device drivers (e.g., for camera, audio, etc.) and related system settings to 

support their hardware. Most customizations on the Android kernel layer are actually related to those 

devices, and they are extremely error-prone, due to the complexity of Android architecture and the 

security mechanism built upon it. Android is a layered system, with its app layer and framework layer 

built with Java sitting on top of a set of C libraries and the Linux kernel. Device drivers work on the 

Linux layer and communicate with Android users through framework services such as Location 

Service and Media Service. Therefore, any customization on an Android device needs to make sure 

that it remains well protected at both the Linux and framework layers, a task that can be hard to 

accomplish within the small time window the vendors have to develop their own OS version. Any 

lapses in safeguarding these devices can have devastating consequences, giving a malicious app access 

to sensitive user information (e.g., photos, audio, location, etc.) and critical services they provide (e.g., 

GPS navigation
[35]

). However, with the complexity of Android‟s layered system architecture and 

limited device-related documentations available in the wild, so far, little has been done to understand 

the security risks in such device customizations, not to mention any effort that helps detect the threats 

they may pose.To that end, we perform a three-stage process to evaluate a given smartphone‟s stock 

firmware image. First, we perform provenance analysis, aiming to classify each pre-loaded app into 

three categories: 

1. apps originating from the AOSP
[34]

 

2. apps customized or written by the vendor, and  

3. third-party apps that are simply bundled into the stock image.We then analyze, in two different 

ways, the security implications of each app: 

(1) Permission usage analysis compares the permissions requested by the app with those that it 

actually uses, looking for apps that request more permissions than they use. This situation is known as 

permission over privilege, and it indicates a poor understanding of the Android security model  

 

(2) Vulnerability analysis, in comparison, looks for two general types of actual security vulnerabilities: 

permission re-delegation attacks and content leaks. Permission re-delegation attacks allow 
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unprivileged apps to act as though they have certain sensitive permissions, while content leaks allow 

such apps to gain (unauthorized) access to private data. 

 

 

 

 

 
 

Fig. 1 Methodology of Analysis. 

 

PROBLEM DEFINITION 
The smartphone market has grown explosively in recent years, as more and more consumers are 

attracted to the sensor-studded multipurpose devices. Android is particularly ascendant; as an open 

platform, smartphone manufacturers are free to extend and modify it, allowing them to differentiate 

themselves from their competitors. However, vendor customizations will inherently impact overall 

Android security and such impact is still largely unknown. When Android phone manufacturers tweak 

devices and customize phones with special software, apps and code, it has a direct effect on the 

security of each device. In our study, we analyze six representative stock Android images from popular 

smartphone vendors. Our goal is to assess the extent of security issues that may be introduced from 

vendor customizations and further determine how the situation is evolving over time. In particular, we 

take a three-stage process: First, given a smartphone‟s stock image, we perform provenance analysis
[36]

 

to classify each app in the image into three categories: apps originating from the AOSP, apps 

Customized or written by the vendor, and third-party apps that are simply bundled into the stock 

image. Such provenance analysis allows for proper attribution of detected security issues in the 

examined Android images. Second, we analyze permission usages of pre-loaded apps to identify 

overprivileged ones that unnecessarily request more Android permissions than they actually use. 

Finally, in vulnerability analysis, we detect buggy pre-loaded apps that can be exploited to mount 

permission re-delegation attacks or leak private information. Our evaluation results are worrisome: 

vendor customizations are significant on stock Android devices and on the whole responsible for the 

bulk of the security problems we detected in each device. Specifically, our results show that on average 

83.15% of all preloaded apps in examined stock images are overprivileged with a majority of them 

directly from vendor customizations. In addition, 64.71% to 85.00% of vulnerabilities we detected in 

examined images from every vendor arose from vendor customizations. In general, this pattern held 

over time – newer smartphones, we found, are not necessarily more secure than older ones. 

 

 

 

 

FACTS AND FINDINGS 
Android has a hierarchical architecture. On top of the stack are various Android apps, including those 

from the system (e.g. contacts, phone, browser, etc.) and those provided by third parties. Supporting 

these apps are the services running on the framework layer, such as Activity Manager, Content 

Providers, Package Manager, Telephone Manager and others. Those services mediate individual apps‟ 
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interactions with the system and enforce security policies when necessary. The nuts and bolts for them 

come from Android C libraries, e.g., SSL, Bionic, Webkit, etc. Underneath this layer is the Linux 

kernel, which is ultimately responsible for security protection. The Android security model is built 

upon Linux user and process protection. Each app is given a unique user ID (UID) and by default, only 

allowed to touch the resources within its own sandbox. Access to system resources requires 

permissions, which an app can ask for at the time of installation. Decisions on granting those 

permissions are made either by the system through checking the app‟s signatures or by the user. When 

some permissions are given to an app, it is assigned to a Linux group corresponding to the permission 

such as gps. Resources on Android typically need to be protected on both the framework layer and the 

Linux layer: the former checks an app‟s permissions and the latter is expected to enforce security 

policies consistent with those on the framework layer to mediate the access to the resources. Vendor 

customization. Android is an open system. Google releases the AOSP versions as baselines and 

different manufacturers (e.g, Samsung, HTC etc.) and carriers (e.g., AT&T, Airtel etc.) are free to tailor 

it to their hardware and add new apps and functionalities. Most of these Android versions from the 

vendors have been heavily customized. For example, prior researches show that among all the apps 

pre-installed by the major smartphone vendors (Samsung, HTC, LG, Sony) on their phones, only about 

18% come from AOSP, and the rest are either provided by the vendors (about 65%) or grabbed from 

third parties (17%). Under the current business model, those vendors have a small time-window of 

about 6 months to customize the official version. This brings in a lot of security issues: it has been 

reported that over 60% of the app vulnerabilities found in a study come from vendor customizations 

[43]. The primary reason for vendors to customize Android is to make it work on their hardware. 

Therefore, the most heavy-lifting part of their customization venture is always fitting new device 

drivers to the AOSP baseline. This is a delicate operation from the security viewpoint: not only should 

those new drivers be well connected to their corresponding framework layer services, so that they can 

serve apps and are still protected by permissions, but they also need to be properly guarded on the 

Linux layer. Further complicating the situation is the observation that a new device may require its 

driver to talk to other existing drivers. The problem here is that the latter‟s permission settings on 

AOSP could block such communication. When this happens, the vendor has to change the driver‟s 

security settings on Linux to accommodate the new driver. An example is the camera device on Galaxy 

SII that needs to use the UMP
[37]

 (Unified Memory Provider) driver to allocate memory; for this 

purpose, Samsung made UMP publicly accessible. Making the UMP accessible publicly compromises 

with the security of the device.  

 

AUTOMATED COLLECTION TOOLS 

The goal of this research is to study vendor customizations on stock Android devices and assess 

corresponding security impact. Note that the software stack running in these devices are complex, and 

their firmware is essentially a collaborative effort, rather than the work of a single vendor. Therefore, 

we need to categorize the code contained in a stock image based on its authorship and audit it for 

possible security issues. After that, we can attribute the findings of the security analyses to the 

responsible party, allowing us to better understand the state of smartphone security practices in the 

industry and spot any evident trends over time. Following three technologies were briefly used in our 

research: 

1. ES File Manager File Explorer 

2. Android-apktool 

3. ASEF (Android Security Evaluation Framework) 

 

Out of these the firt two are simple and widely used in the Android domain.The third,however, 

deserves a little enlightenment as will be evident in the succeeding disussion: 
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ASEF is designed and developed to simulate the entire lifecycle of an Android application in an 

automated virtual environment to collect behavioral data and perform security evaluations 

automatically over „n‟ number of apps. Android Security Evaluation Framework (ASEF) performs this 

analysis while alerting you about other possible issues. It will make you aware of unusual activities of 

your apps, will expose vulnerable components and help narrow down suspicious apps for further 

manual research. The framework will take a set of apps (either pre-installed on a device or as 

individual APK files) and migrate them to the test suite where it will run it through test cycles on a pre-

configured Android Virtual Device (AVD).During the test cycles the apps will be installed and 

launched on the AVD. ASEF will trigger certain behaviors by sending random or custom gestures and 

later uninstall the app automatically. It will capture log events, network traffic, kernel logs, memory 

dump, running processes and other parameters at every stage which will later be utilized by the ASEF 

analyzer. The analyzer will try to determine the aggressive bandwidth usage, interaction with any 

command and control (C&C) servers using Google's safe browsing API, permission mappings and 

known security flaws. ASEF can easily be integrated with other open source tools to capture sensitive 

information, such as SIM cards, phone numbers and others.ASEF is an Open Source tool for scanning 

Android Devices for security evaluation. Users will gain access to security aspects of android apps by 

using this tool with its default settings. An advanced user can fine-tune this, expand upon this idea by 

easily integrating more test scenarios, or even find patterns out of the data it already collects. ASEF 

will provide automated application testing and facilitate a plug and play kind of environment to keep 

up with the dynamic field of Android Security.  

 

 
 

 

Fig 2. The ASEF Framework 

 

RESEARCH METHOLOGY 
The overall architecture of the ASEF system is explained in the following figure. Our system takes a 

stock phone image as its input, preprocessing each app and importing the results into a database. This 

database, initially populated with a rich set of information about pre-loaded apps (including 

information from their manifest files, signing certificates, as well as their code, etc.), is then used by a 

set of subsequent analyses. Each analysis reads from the database, performs its analysis, and stores its 

findings in the database. To study the impact of vendor customizations on the security of stock Android 

smartphones, we performed three such analyses. 

First, to classify each app based on its presumed authorship, we perform provenance analysis. This 

analysis is helpful to measure how much of the baseline AOSP is still retained and how much 

customizations have been made to include vendor specific features or third-party apps. 

To further get a sense of the security and privacy problems posed by each app, we use two different 

analyses:  
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Permission usage analysis
[40]

 assesses whether an app requests more permissions than it uses, while 

Vulnerability analysis scans the entire image for concrete security vulnerabilities that could 

compromise the device and cause damage to the user. Ultimately, by correlating the results of the 

security analyses with the provenance information we collected, we can effectively measure the impact 

of vendor customizations. 

 

 

 
 

FIG 3.RESEARCH METHOLOGY 

PROVENANCE ANALYSIS 
THE MAIN PURPOSE OF PROVENANCE ANALYSIS IS TO STUDY THE DISTRIBUTION OF PRE-LOADED APPS AND 

BETTER UNDERSTAND THE CUSTOMIZATION LEVEL BY VENDORS ON STOCK DEVICES. SPECIFICALLY, WE 

CLASSIFY PRELOADED APPS INTO THREE CATEGORIES: 

 AOSP app: the first category contains apps that exist in the AOSP and may (or may not) 

be customized by the vendor.  

 Vendor app: the second category contains apps that do not exist in the AOSP and were 

developed by the vendor.  

 Third-party app: the last category contains apps that do not exist in the AOSP and were 

not developed by the vendor. 

The idea to classify pre-loaded apps into the above three categories is as follows. 

First we collect AOSP app candidates by searching the AOSP, then we exclude these AOSP apps from 

the pre-loaded ones. After that, we can classify the remaining apps by examining their signatures (i.e., 

information in their certificate files) based on a basic assumption: third-party apps shall be private and 

will not be modified by vendors. Therefore, they will not share the same signing certificates with 

vendor apps. In practice, this process is however not trivial. Since AOSP
[34]

 apps may well be 

customized by vendors, their signatures are likely to be changed as well. Although in many cases, the 

app names, package names or component names are unchanged, there do exist exceptions. For 

example, Sony‟s Conversations app, with package name com.sonyericsson.conversations, is actually a 

customized version of the AOSP Mms app named com.android.mms. In order to solve this problem, we 

perform a call graph similarity analysis, which has been demonstrated to be an effective technique 

even to assist malware clustering and provenance identification. To generate the call graph required by 

any such analysis, we add all method calls that can be reached starting from any entrypoint method 

accessible to other apps or the framework itself. However, we are hesitant to use graph isomorphism 

techniques to compare these call graphs, as they are complex and have undesirable performance 

characteristics. Instead, we notice that later analysis will use paths, sequences of methods that start at 

an entrypoint and flow into a sink (i.e., API
[39]

 or field which may require sensitive permissions, lead to 

dangerous operations or meet other special needs). Therefore, we choose to preprocess each app, 

extract and compare the resulting paths, a much more straightforward process that still compare the 

parts of each app that we are most concerned with. 

From our prototype, we observe that such a path-based similarity analysis is implementation-friendly 

and effective. Particularly, we use the return type and parameters (number, position and type) of each 
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method in the path as its signature. If the similarity between two paths exceeds a certain threshold, we 

consider these two paths are matching. And the similarity between two apps is largely measured based 

on the number of matched paths. In our prototype, to determine which apps belong to the AOSP, we 

accordingly take the approach: 

 

 

1. by matching app names and package names 

2. by matching component names in the manifest file, and 

3. then by calculating the similarity between paths and apps. 

We point out that a final manual verification is always performed to guarantee the correctness of the 

classification, which can also confirm the effectiveness of our heuristics. During this stage, we also 

collect one more piece of information: the code size of pre-loaded apps measured by their lines of code 

(LOC)
[38]

. Although it is impossible for us to get all the source code of the pre-loaded apps, we can still 

roughly estimate their size based on their decompiled .smali code. Therefore, we can draw a rough 

estimate of vendor customization from provenance analysis because the number and code size of apps 

are important indicators. 

 

PERMISSION USAGE ANALYSIS 

 

Our next analysis stage is designed to detect instances of permission over privilege, where an app 

requests more permissions than it uses. ASEF applies permission usage analysis to measure the 

adoption of the principle of least privilege in app development. Note that here it is only possible to get 

the usage of permissions defined in the standard AOSP framework. The usage of vendor-specific 

permissions cannot be counted because of the lack of related information. There are four types of 

permissions in Android: 

 normal 

 dangerous 

 system 

 systemOrSignature.  

The latter three are sensitive, because normal permissions are not supposed to be privileged enough to 

cause damage to the user. Specifically, we define permissions declared by element uses-permission in 

the manifest file as requested permissions, and permissions which are actually used (e.g., by using 

related APIs
[39]

) as used permissions respectively. An over declared permission is a permission which is 

requested but not used. Over privileged apps contain at least one over declared permission. In 

permission usage analysis, from the database, we have the initial requested permission set of apps (as it 

is in the manifest information), and our goal is to find the over declared permission set. Despite the 

initial requested permission set, we find it still needs to be augmented. Especially, there is a special 

manifest file attribute, sharedUserId, which causes multiple apps signed by the same developer 

certificate to share a user identifier, thus sharing their requested permission sets. (As permissions are 

technically assigned to a user identifier, not an app, all such apps will be granted the union of all the 

permissions requested by each app. Accordingly, apps with the same sharedUserId require extra 

handling to get the complete requested permission set. Next, we leverage the known permission 

mapping built by earlier work to determine which permissions are actually used. Having built both the 

requested permission set and the used permission set, we can then calculate the over declared 

permission set. 

Our approach to calculate the over declared permission set is conservative. Notice that some 

permissions declared in the manifest file may be deprecated in the corresponding standard Android 

framework. An example is the permission READ_OWNER_DATA that was removed after API level 8 

(i.e., Android version 2.2), but still declared by one app in the Nexus 4 (API level 17, or Android 4.2). 
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We do not consider them as over declared permissions, because the vendor may retain deprecated 

permissions in the customized framework for its own usage. Some studies concerned themselves only 

with those permissions that are available to third-party apps. In our study, we need to cover additional 

permissions defined at system and systemOrSignature levels, which may not be well documented. 

After obtaining the over declared permission set, we then analyze the overall permission usage of each 

device, and classify results by provenance. The distributions of over privileged apps as well as over 

declared permissions can then both be studied. Further, we also perform horizontal and vertical 

analysis, i.e., cross-vendor, same generation, vs. cross-generation, same-vendor comparisons. 

 

VULNERABILITY ANALYSIS 

 

While our permission usage analysis aims to measure the software development practices used in the 

creation of each pre-loaded app, vulnerability analysis is concerned with finding real, actionable 

exploits within those apps. Specifically, we look for two representative types of vulnerabilities in the 

Android platform which stem from misunderstanding or misusing Android‟s permission system. First, 

we identify permission re-delegation attacks, which are a form of the classic confused deputy attack. 

Such an attack exists if an app can gain access to an Android permission without actually requesting it. 

A typical example is an app which is able to send Short Message Service (SMS) messages without 

acquiring the (supposedly required) SEND_SMS permission. For the second kind of vulnerability, we 

consider content leaks, which essentially combine the two types of content provider vulnerabilities: 

passive content leaks and content pollution. An unprotected content provider (i.e., one that takes no 

sensitive permission to protect its access) is considered to have a passive content leak if it is world-

readable, and to have content pollution if it is world-writable. We extend this definition to cover both 

open and protected content providers. The protected ones are also interesting as there may also  exist 

unauthorized accesses to them through the other three types of components which could serve as 

springboards for exploitation. For ease of presentation, we call these vulnerabilities content leaks. As 

our main goal is to accurately locate possible vulnerabilities, we in this study consider the following 

adversary model: a malicious app, which is compatible with the phone, may be installed on the phone 

by the user. We do not expect the malicious app will request any sensitive permission during 

installation, which means it, will only rely on vulnerable apps to accomplish its goals: either steal 

money from the user, gather confidential data, or maliciously destroy data. In other words, we limit the 

attacker to only unprivileged third-party apps to launch their attacks. Keeping this adversary model in 

mind, we focus our analysis on security-critical permissions – the ones that protect the functions that 

our adversary would most like to gain access to. Specifically, for permission re-delegation attacks, we 

focus on permissions that are able to perform dangerous actions, such as SEND_SMS and 

MASTER_CLEAR, because they may lead to serious damage to the user, either financially or in terms 

of data loss. As for content leaks, we ignore those whose exposures are likely to be intentional. Note 

that some apps may be vulnerable to low-severity content leaks; for example, publicly-available 

information about a network TV schedule is not as sensitive as the user‟s banking credentials. In other 

words, we primarily consider serious content leaks whose exposures are likely to cause critical 

damages to the user. To actually find these vulnerabilities, we rely on a few key techniques. An 

essential one is reachability analysis, which is used to determine all feasible paths from the entry point 

set of all Android components, regardless of whether we consider them to be protected by a sensitive 

permission. To better facilitate vulnerability analysis
[41]

, we define two varieties of sinks: 

• sensitive-sinks: sensitive Android APIs which are related to sensitive permissions (e.g., 

MASTER_CLEAR) of our concern 

• bridge-sinks: invocations that are able to indirectly trigger another (vulnerable) component, e.g., 

sendBroadcast. 
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Note that any path reachable from an open entrypoint or component can be examined directly to see if 

it has a sensitive-sink. Meanwhile, we also determine whether it could reach any bridgelink that will 

trigger other protected components (or paths). The remaining paths, whose entry points are protected, 

are correlated with paths that contain bridge-sinks to form the complete vulnerable path, which is 

likely cross-component or even cross different apps. This is essentially a reflection-based attack. All 

calculated (vulnerable) paths will subject to manual verification. We stress that unlike some previous 

works which mainly focus on discovery of vulnerabilities; this analysis stage primarily involves a more 

contextual evaluation of vulnerabilities, including distribution, evolution and the impact of 

customization. Especially, we use the distribution of vulnerable apps as a metric to assess possible 

security impact from vendor customizations. Note the detected vulnerabilities are classified into 

different categories by their provenance and leveraged to understand the corresponding impactof 

customization. As mentioned earlier, both horizontal and vertical impact analyses are performed. 

 

REACHABILITY ANALYSIS  

 

It is performed in two steps. The first step is intra-procedural reachability analysis, which involves 

building related call graphs and resolving it by conventional def-use analysis. The resolution starts 

from the initial state (pre-computed when the database is initially populated) and then gradually seeks 

a fixed point of state changes with iteration (due to various transfer functions). However, as the state 

space might be huge (due to combinatorial explosion), the convergence progress could be slow or even 

unavailable. In practice, we have to impose additional conditional constraints to control the state-

changing iteration procedure. We call the result of intra-procedural analysis, i.e., the states of variables 

and fields, a summary. The second step is inter-procedural reachability analysis that is used to 

propagate states between different methods. After each propagation, method summaries might be 

changed. In such cases, intra-procedural reachability analysis is performed again on each affected 

method to generate a new summary. Inter-procedural reachability analysis is also an iterative process, 

but takes longer and requires more space to converge; therefore, we use some heuristics to reduce the 

computational and space overhead. For instance, if a variable or field we are concerned with has 

already reached a sink, there is no need to wait for convergence. Paths of apps from different vendors 

but with similar functionality may share something in common, especially for those apps inherited 

from the standard AOSP framework. Here “common” does not mean that their source code is exactly 

the same, but is similar from the perspective of structure and functionality. Many devices reuse the 

code from the AOSP directly, without many modifications. If we have already performed reachability 

analysis on such a common path, there is no need to do it on its similar counterparts. It improves 

system performance since reachability analysis is time consuming (especially when the state space is 

huge). Therefore, we also perform a similarity analysis as a part of the reachability analysis to avoid 

repetitive efforts. 

 

REFLECTION ANALYSIS  

 

To facilitate our analysis, we classify vulnerable paths into the following three types: 

• in-component: a vulnerable path that starts from an unprotected component to a sink that is located 

in the same component. 

• cross-component: a vulnerable path that starts from an unprotected component, goes through into 

other components within the same app, and then reaches a sink. 

• cross-app: a vulnerable path that starts from an unprotected component of one app, goes through into 

another app‟s components, and eventually reaches a sink.  

  The in-component vulnerable paths are relatively common and have been the subject of 

recent studies. However, the latter two, especially the cross-app ones, have not been well studied yet, 
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which is thus the main focus of our reflection analysis. Note that a reflection-based attack typically 

involves with multiple components that may not reside in the same app. Traditional reachability 

analysis has been effective in detecting in-component vulnerable paths. However, it is rather limited 

for other cross-component or cross-app vulnerable paths. (A cross-app execution path will pass through 

a chain of related apps to ultimately launch an attack.) In order to identify them, a comprehensive 

analysis of possible “connection” between apps is necessary. To achieve that, our approach identifies 

not only possible reachable paths within each component, but also the invocation relationship for all 

components. The invocation relationship is essentially indicated by sending intent from one component 

to another, explicitly or implicitly. An explicit intent specifies the target component to receive it and is 

straightforward to handle. An implicit intent, on the other hand, may be sent anonymously without 

specifying the receiving component, thus requiring extra handling (i.e., intent resolution in Android) to 

determine the best one from the available components. In our system, ASEF essentially mimics the 

Android intent resolution mechanism by matching an intent against all possible <intent-filter> manifest 

declarations in the installed apps. However, due to the offline nature of our system, we have limited 

available information about how the framework behaves at run-time. Therefore, we develop the 

following two heuristics: 

• A component from the same app is preferable to components from other apps. 

• A component from a different app which shares the same sharedUserId is preferable to 

components from other apps. 

 

RESULTS 

 

We have implemented ASEF (Android Security Evaluation Framework),a mix of Java code and Python 

scripts. This category contains apps that exist in the AOSP and may (or may not) be customized by the 

vendor. In our evaluation, we examined six representativephones (Table 1) released after 2012 by six 

popular vendors: Google, Samsung, HTC, LG, Motorola and Sony. The selected phone model either 

has great impact and is representative, or has huge market share. For example, Google‟s phones are 

designed to be reference models for their whole generation; Samsung is the market leader which 

occupies 39.6%of smartphone market share in 2013. To analyze these phone images, our system 

requires on average 80 minutes to process each image (i.e., around 40 seconds per app) and then 

reports vulnerable paths for us to manually verify. Considering the off-line nature of our tool, we 

consider this acceptable, even though our tool could be optimized further to speed up our analysis.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



International Journal of Higher Education and Research (www.ijher.com)          42 (www.ijher.com) 

DEVIC

E 

RELEAS

E DATE 

ANDROI

D 

VERSIO

N 

BUILD 

NUMBE

R 

Motorol

a Moto 

G 

Novembe

r 2013 

4.4.2 KXB20.2

5 

Samsun

g Note 

II 

Septembe

r 2012 

4.3 JSS15J 

Sony 

Xperia 

M 

June 2013 4.3 15.4.A.0.2

3 

LG 

Optimus 

L5 

April 

2013 

4.1.2 JZ054K 

Google 

Nexus 5 

October 

2013 

4.4.2 KOT49H 

HTC 

One V 

April 

2012 
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Fig 4. Six android devices we have used. 

 

PROVENANCE ANALYSIS 

 

As mentioned earlier, the provenance analysis collects a wide variety of information about each device 

and classifies pre-loaded apps into three different categories. In Table 2, we summarize our results. 

Overall, these six devices had 546 pre-loaded apps, totaling 3,67,34,925 lines of code (in terms of 

decompiled .smali code). A further break-down of these apps show that, among these devices, there are 

on average 18.67 (20.5%), 57 (62.63%), and 15.33 (16.84%) apps from the categories of AOSP, vendor 

and thirdparty, respectively. Note that the apps in the AOSP category may so be customized or 

extended by vendors. As a result, the figures in the AOSP column of Table 2 should be considered an 

upper bound for the proportion of code drawn from the AOSP. Accordingly, on average, vendor 

customizations account for more than 83.15% of apps (or 78.34% of LOC[38]) on these devices. In our 

study, we selected one phone model for each vendor,from the current crop of Android 4.x phones. 

Table 1 shows the initial releasedate of each phone model, as reported by GSM Arena. As it turns out, 

these devices can be readily classified by their release dates.Some devices were released in the year 

2012 and the rest were released in 2013. Such classification is helpful to lead to certainconclusions. 

For example, as one might expect, the complexity these devices is clearly increasing over time. In all 

cases, the 2013 products contain more apps and LOC than their 2012 counterparts. Specifically, the 

Samsung Note II has 87 apps with 81,54,224 LOC, and the HTC One V has 91 apps with 4660940 

LOC. The number of apps and LOC increase 90.47% and 103.49%, respectively. The HTC One V had 

the most number of vendor specific apps (80.21%) followed by Sony Xperia M (74.78%), Motorola 

Moto G (62.8%), LG Optimus L5 (60.02%), Samsung Galaxy Note II (57.47%) and Google Nexus 5 

(39%).Interesting fact is that vendor specific apps in Google Nexus 5 accounted only 39% of the total 
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apps, least amongst the devices studied. 

 

 

  

 

Fig 5. Provenance analysis of representative devices 

 

 

PERMISSION USAGE ANALYSIS 

 

After determining the provenance of each pre-loaded app, our next analysis captures the instances of 

permission over-privilege, where an app requests more  

permissions than it uses. The results are as:  

 Fig 6.Permission Usage Analysis 

 On average, there is an alarming fact that across the six devices, 86.64% of apps are over-privileged. 

The most overprivileged are the vendor customized apps (51.93%) followed by AOSP apps (18.59%). 

The 3rd party apps are least over privileged and contribute only 16.12%. The LG Optimus L5 has the 

most overprivileged apps (92.61%) and Samsung Galaxy Note II has the least (78.71%). Even 

Google‟s reference device, Nexus 5, does not necessarily perform better than the others; the Nexus 5 

has the third most overprivileged apps of all the devices. Note that the situation does not appearto be 

getting better as time goes on. The average percentage of overprivileged apps in the 2013 devices has 

decreased to 85.61%, compared to 87.96% of all apps on 2012 devices. The decrease is of a very lesser 

margin and is still hardly reassuring. Interestingly, our results show that the proportion of 

overprivileged pre-loaded apps is more than the corresponding result of third-party apps. The highest 

percentage of 3rd party overprivileged apps is in LG Optimus L5 (27.45%) and least is in Google 

Nexus 5 (8.79%). On the other hand, vendor customized overprivileged apps account for 61.08% in 

Motorola Moto G, the most, and 40.44% in LG Optimus L5, the least. The interesting fact is that the 

least value of vendor customized apps (40.44%) is nowhere close to the highest value of 3rd party apps 

(27.45%). We believe there are two main reasons: 

 

Model Total AOSP apps Vendor apps 3
rd

 party apps 

 
App

s 
LOC Apps LOC Apps LOC Apps LOC 

Motorola 

Moto G 
70 

409129

3 
11 984365 44 2280396 15 826532 

Samsung 

Note II 
87 

815422

4 
14 2983630 50 2987621 23 2182973 

Sony Xperia 

M 
115 

754419

4 
19 2168394 86 3926521 10 1459279 

LG Optimus 

L5 
83 5113313 22 959212 50 700966 11 1149935 

Google 

Nexus 5 
100 

717096

1 
34 1134446 39 3654761 27 2381754 

HTC One V 91 
466094

0 
12 783970 73 3391343 6 485627 

Total 546 
367349

25 
112 9014017 342 

1694160

8 
92 8486100 
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1) Pre-loaded apps are more privileged than third-party apps, as they can request certain permissions 

not available to third-party ones. 

 

2) Pre-loaded apps are more frequent in specifying the sharedUserId property, thereby gaining much 

(possibly unnecessary) permission set. 

 

Specifically, if we take into account the provenance of each app, a different story emerges. Looking 

over the breakdowns in Table 3, both modest gains over time appear to be primarily attributable to a 

reduction in app over privilegeamong AOSP apps; vendors appear to be responsible for roughly the 

same amount of overprivileged apps in each image (57.82% of 

both 2012 apps, vs. 55.96% of all 2013 apps). In this sense the vendors themselves do notappear to 

care significantly more about the least privilege principlethan third-party app developers do, despite 

being, on average, muchlarger corporate entities.Note that pre-loaded apps have access to certain 

permissions that are not available to third-party apps. Therefore, these overdeclared permissions, if 

exploited, can lead to greater damage. For example, our results demonstrate that both REBOOT and 

MASTER_CLEAR are among overdeclared permissions that can allow for changing (important) 

device status or destroying user data without notification. 

 

 

 

 

 

CONCLUSION 
The Telecom industry is a mercurial entity. The smartphone era started with a loud bang, and it has 

made the users of formerly used feature phone devices consider switching to this advanced technology. 

Android started with a 2% market share in 2008, and now it has 

more than 60% smartphone users. Android provides an extremely user friendly experience with a very 

supportive ecosystem of applications being continually updated and enhanced by developers from the 

parent company as well as other extension developers all around the world. There are certain 

inadequacies which I have come across as a user and researcher, but they could be subjective. There 

are certain features and enhancements which I would expect to be included in future versions, and new 

ones might be added as they become available or, rather invented. 

Model Total AOSP apps Vendor apps 3
rd

 party apps 

Motorola Moto 

G 
85.18 8.41 61.08 15.59 

Samsung Note 

II 
78.71 12.91 15.54 10.46 

Sony Xperia M 82.98 10.86 59.55 12.57 

LG Optimus L5 92.61 24.72 40.44 27.45 

Google Nexus 

5 
49.17 38.07 42.31 8.79 

HTC One V 91.17 16.58 52.83 21.76 

Avg. 86.64 18.59 51.93 16.12 
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My research covers the basics of Android, its functioning as a system and logging and debugging 

mechanism. In conclusion, Android‟s future is happening now, and further enhancements to this 

already diverse and this multifunctional platform will only take software engineering to the next level.  
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